Ini. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 31, No. 3, pp. 505-515, 1988 0017-9310/88 $3.00 +0.00

Pergamon Press plc

Heat conduction numbering system for basic
geometries

JAMES V. BECK

Heat Transfer Group, Department of Mechanical Engineering, Michigan State University, East Lansing,
MI 48824, US.A.

and

BAHMAN LITKOUHI
Department of Mechanical Engineering, Manhattan College, Riverdale, NY 10471, U.S.A.

{Received 2 December 1986 and in final form 11 May 1987)

Abstract—A numbering system for transient heat conduction solutions is proposed. It builds on previous

usage of the descriptions of boundary conditions. One-, two- and three-dimensional geometries are included.

Furthermore, a unique numbering system is proposed to describe boundary, interface, and initial
conditions. Examples of the use of the notation are given. Advantages of the system are noted.

1. INTRODUCTION

THE NUMBER of exact solutions in transient heat
conduction and diffusion is extremely large and is
growing. These solutions are needed for thermal
modeling of various devices, as test cases for finite
difference/element programs, and as influence func-
tions for the unsteady surface element method [1, 2}.
Solutions are given in many different pamphlets, and
government and industry reports. Due to the lack of
organization of the solutions, it was formerly easier
to rederive a solution than to search for it. With the
advent of extremely large and relatively inexpensive
computer memories, the development of specialized
data bases has become practical and they exist in
medicine, law and many other fields. One paper on
using artificial intelligence for heat transfer problems
has been written by Sharma and Minkowycz [3]. Data
bases are used by expert systems. In developing such
systems, it is very useful to have a numbering system
to organize the information.

The purpose of this paper is to propose a numbering
system for transient heat conduction. Such a system
will not only simplify construction of a computer data
base but it will make deriving new solutions simpler
and locating solutions less tedious.

This paper deals with exact solutions. However, the
numbering system can be employed for nonlinearities
caused by temperature-variable properties. Basic
geometries such as plates, cylinders and spheres are
considered. Irregular geometries such as plates with
several randomly spaced holes are not covered.

A numbering system for the basic geometries and
boundary conditions is given in refs. [4, 5] and is
described in the next section. That numbering system
is used as a starting point in this paper. The proposed

numbering system extends the notation to describe
the initial spatial temperature variation and the time-
variation of the boundary conditions. In addition,
interface conditions between bodies are covered.

The numbering system in this paper is specifically
developed for transient diffusion and heat conduction.
The same concepts, however, are applicable to other
fields such as convective heat transfer, fluid mechanics
and wave phenomena. Steady state is also covered
because it is included by the transient notation.

The plan of this paper is to first review the num-
bering system for geometry and boundary conditions
in Section 2. A new scheme for describing interface
conditions is given in Section 3. Section 4 provides a
numbering system that describes the time and/or
space variations of the non-homogeneous term at a
boundary. Section 5 gives an initial temperature dis-
tribution numbering system and Section 6 gives some
examples of the numbering system. Section 7 discusses
some advantages of the numbering system; these
include aiding in the development and use of a data
base in transient conduction, development of an
algebra for linear cases, and aiding in derivation of
exact solutions.

2. GEOMETRY AND BOUNDARY CONDITION
NUMBERING SYSTEM

A numbering system for basic geometries and types
of boundary conditions is given in refs. {4, 5]. For the
rectangular coordinate system the symbol X is used
to denote the x-coordinate, Y is used to denote the y-
direction and Z is used to denote the z-direction. For
a two-dimensional problem, X and Y are used; fora
three-dimensional problem, X, Y and Z are used. The
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NOMENCLATURE
b film thickness RS  notation for spherical radial coordinate
B notation for boundary condition t time
modifier T(r,t) temperature
¢ specific heat T notation for initial condition
C notation for interface condition b space coordinate
f(©) non-homogeneous boundary condition X notation for rectangular coordinate in
term x-direction
F(x) initial temperature distribution y space coordinate
G(x,t|x’,7) Green's function z space coordinate.
h heat transfer coefficient
k thermal conductivity Greek symbols
n normal coordinate 0 spherical angular coordinate
r radial coordinate p density
R notation for cylindrical radial coordinate ¢ angular coordinate.

three-dimensional equation for transient conduction
with constant, isotropic thermal conductivity, k, is

o*T  8*T 0T oT
Fr LR e TR

where T is temperature, p is density, ¢ is specific heat
and ¢ is time. Though k and pc are considered constant
in most analytical solutions, a method for including a
reference to variable properties is given in the pro-
posed numbering system.

For the cylindrical coordinates, r, ¢, x, the symbol
R is for r, @ is for the angle ¢ and X is for the axial
coordinate. For constant k, the three-dimensional
equation is

Jrofer
r or rar +

For the spherical coordinate system, r, ¢, 0, the sym-
bols are RS, ®, ©. The symbol RS is used to denote
radial in the spherical direction. The angle ¢ for both
the cylindrical and spherical coordinate goes from 0
to 2m.

Six different boundary conditions are given in refs.
[4, 5] and are numbered 0, 1, 2, 3, 4 and 5 (see Table
1). The first, second, and third kinds are commonly
denoted as such in the American and Russian litera-
ture. In Ozisik’s recent excellent book [6] on heat
conduction, these three boundary conditions are also
referred to as the first, second and third kinds. They

1 °T 9°T oT
Popt T [T @

are also used in the book by Mikhailov and Ozisik
{7]. Carslaw and Jaeger [8] discuss all the boundary
conditions mentioned above, including the fourth and
fifth kinds, but do not use the words first kind, etc. In
the Russian translation of the book by Luikov [9], the
words “boundary conditions of the first, second and
third kind” are consistently used. Unfortunately what
Luikov calls the “boundary condition of the fourth
kind” is not really a boundary condition but a variety
of composite body problems.

The first kind of boundary condition (Dirichlet) is
the prescribed temperature at boundary {

T(l',-, t) = ﬁ(ri5 t) (3)

where fi(r;, 1) is the space and time dependent surface
temperature. For a one-dimensional case at x =0,
fi() can be a function of time only, such as
T(0, 1) = f,(f). For a two-dimensional case with coor-
dinates, (x, y), and x = x,

T(xlay’ t) = fl(y’ l)'

The second kind of boundary condition (Neumann)
is prescribed heat flux

or
K|, = 60 @

where n, is an outward pointing normal. For a one-
dimensional case of boundaries at x, = 0and x, = L,
n, = —x and »n, = x; the boundary conditions are

Table 1. Types of boundary conditions

Notation Name of boundary condition Description of boundary condition

0 Zeroth kind (natural)
1 Dirichlet

2 Neumann

3 Robin

4

S

Fourth kind (Carslaw)
Fifth kind (Jaeger)

No physical boundary

Prescribed temperature, equation (3)
Prescribed heat flux, equation (4)
Convective condition, equation (6)
Thin film, no convection, equation (7)
Thin film, convection, equation (8)
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No steady state (zero eigenvalue)

21 cases

L— finite geometry

Another important case is the zeroth kind. It is for

X10 X11

X20 X21

X30 X31

X40 X41

? XS0 X51

semi-infinite
geometry
F1G. 1. Distinct cases for one-dimensional Cartesian geometries.

aT aT
~k— = 1, k— = t Sa,b
ax veo fl()’ ax el f2() ( » )

and f,(¢) and f,(¢) are heat fluxes directed toward the
surfaces.
The third kind (Robin) is a convective condition

oT
+h ., = fir, 1) ©®

on; |y,

k

where 4, is the heat transfer coefficient and fi(r;,t)
is usually equal to 4, T,, with T, being the ambient
temperature, but fi(r;, f) can also include a prescribed
heat flux.

The fourth kind (Carslaw) is for a thin film at a
surface with a prescribed heat flux, f(*)

oT oT
Kan|, = @ 0=GdZ | . O

The product (pcb); is for the film at the ith surface
and b, is its thickness. This boundary condition can
also describe a well-stirred fluid.

The fifth kind (Jaeger) of boundary condition is
also for a thin film but permits heat losses from the
film by convection

oT oT
ka_n,. :rh"T = file ) = (pecb)i o 5 ®)

conditions for which there is no physical boundary;
it is sometimes called a natural boundary condition. It
includes several cases. In the rectangular coordinates,
the zeroth kind exists when a boundary extends to
infinity. For example, a semi-infinite body that is con-
vectively heated at x = 0 is denoted X30. Another is
for the center of radial cylindrical and spherical bodies
that are solid. A solid cylinder with a prescribed sur-
face heat flux is denoted R02. The case associated
with a convective boundary condition at r = a and
a spherical domain outside » = a is denoted RS30.
Another case is for a thin annular ring which is
denoted ©00.

Cases included in this numbering system are illus-
trated by Figs. 1-3. The first is for the Cartesian coor-
dinate x and includes 21 distinct cases ; others such as
X12 can be listed but these can be found by a simple
change of coordinates (i.e. x > L—x, where L is the
plate thickness). Notice that the cylindrical radial case
shown in Fig. 2 includes 26 cases because the RI0
(I =1,...,5) geometries are quite different from the
ROT geometries, the former being the infinite region
bounded internally by the radius r = a and the latter
for solid cylinders of radius a. The annular geometries
have neither 7 nor J in RIJ equal to zero and have
boundary radii of a and b. The spherical radial cases,

/— infinite geomet:y/-——- solid cylinder

No steady state (zero eigenvalues)

26 cases

Eog] RO1 2] RO3 ROS |
RI10 ril
R20 21 [R22
R30 R31  R32/ R33
R&0 R&1 %2 R43  [KRA
RSO RS51 RS2 R53 R54 RS55

Region m.\t:s:l.cleL annulus geometry

cylinder

Fi1G. 2. Distinct cases for one-dimensional radial geometries.



508

Ecomplete ring

®11
21
#31

#41

#51 #53

#54
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No steady state (zero eigenvalue)

16 cases

955

\— _ partial ring

F1G. 3. Distinct cases for ring geometries

RS1J, can be displayed as Fig. 2 with R replaced by
RS. For the cylindrical coordinate ¢ and small
changes in r, a ring is obtained ; cases are displayed in
Fig. 3. The special case in Fig. 3 is for a complete ring.
There are neither @07 nor ®J0 cases with 7 # 0. Except
for the ®00 case, the cases in Fig. 3 have the same
mathematical solution as the corresponding X1J cases
of Fig. 1.

There are three special finite-body cases in Fig. 1
which (usually) have no steady state; namely, X22,
X42 and X44. There are five such special cases in Fig.
2 and four in Fig. 3. Mathematically, these cases are
associated with zero eigenvalues. From a physical per-
spective, these cases do not have a steady state for
time-independent values of f(*) in equation (4) or (7)
(unless there is the special case of zero net heat added).
The ®00 case is unique since there are no physical
boundaries; however, in this case (and the special
finite body cases) there is no steady state for a constant
volume source in the respective bodies.

For the infinite geometries of Figs. 1 and 2, i.e. the
first column in both figures, steady state is not usually
attained in finite times.

3. INTERFACE DESCRIPTORS

The proposed numbering system includes com-
posite bodies. The interface conditions are denoted in
a manner similar to the boundary conditions. For
perfect contact, the letter C is used for each side of
the interface.

For other conditions the letter C is followed by a
single digit and enclosed in parentheses (see Table 2).
The notation, (C2), is used to denote a perfect contact

Table 2. Types of interface conditions

Notation Description of interface condition
C Perfect contact
(C2) Perfect contact with source at interface
(C3) Finite contact conductance
(C4) Thin film at interface, perfect contact
()] Thin film, finite contact conductances

with a heat source at the interface. This is a gradient
condition and hence is analogous to the second kind
of boundary condition. The notation, (C3), is used to
denote an imperfect contact that can be described by
a contact conductance, A,

oT

= - D= -kt —
- hc(Tr,- Tr,-) k ar

T

—k or

®

+
Ti

The (C4) case is for a thin film (or well-stirred fluid)

in perfect contact at the interface

_oT
or

oT

+

oT
= (PCb)i‘a; o A

4]

—k (10)

i

where (pcb); is for the thin film or well-stirred fluid.
The (C5) interface condition is

aT

~ oT
or |- = hc (Tr,__Tr,)+(pCb)lE

i

—k

ri

L oT

+h:-(Tr_Tr+) =—k
roon or

an

i

There is a thin film at the interface with contact con-
ductances on both sides (or a well-stirred fluid with
heat transfer coefficients on both sides). The subscript
r; is for the thin film; r; is for the interface on the
left; and r;" is for the interface on the right-hand side.

4. BOUNDARY CONDITION MODIFIERS

The boundary conditions of the first through fifth
kinds are denoted as indicated in Section 2 but the
time and/or space variation must also be specified.
This means that the function f(r,, ¢) in equations (3),
(4), and (6)—(8) must be described. For one-dimen-
sional cases, f; is only a function of time. The one-
dimensional case is first considered and then two- and
three-dimensional cases are discussed.

For one-dimensional cases the function f(z)
includes zero (denoted BO0), constant with time (B1)
(actually a step increase at ¢ = 0), linear with time
(B2), some power other than 1 of 7 (B3), exponentials
(B4), two or more step changes (B5), and sinusoids
(B6) (see Table 3). Only the basic cases are given
specific notation. Solutions permitting an arbitrary
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Table 3. Types of time- and space-variable function at boundary conditions

Time-variable

Space-variable

Notation boundary function Notation boundary function (two-dimensional)
B- Arbitrary £(r) Bx— Arbitrary f(x)
B0 f(H=0
B1 f@=c
B2 f@®=Ct Bx2 f(x)=Cx
B3 f=ce Bx3 f(x) = Cx?
B4 f(t) =exp(—ar) Bx4 f(x) =exp(—ax)
BS step changes in f(f) Bx5 step changes in f(x)
B6 sin (wt+ E), cos (wt+ E) Bx6 sin (wx+ E), cos (wx+ E)

time variation are indicated by a dash, — (see Table
5).

For homogeneous one-, two-, or three-dimensional
bodies, the geometry and boundary condition descrip-
tors are followed by the boundary condition modifier,
BIJ. An example is X'12814 where B14 indicates that
the boundary condition of the first kind (prescribed
temperature) at x = 0 is a non-zero constant and the
boundary condition of the second kind (prescribed ¢)
at x = L has an exponential dependence on time. In
general, two indices follow B but there is an exception.
Only one index is needed when there is a boundary
condition of the zeroth kind such as X20B1 or R03B1,
where the B1’s describe the non-zero boundary con-
ditions. If both boundaries are of the zeroth kind (e.g.
X00, R0O0 and ®00), then the B modifier is not used.

For two-dimensional cases the variation of f(-) at
a boundary can be a function of space as well as time.
For a two-dimensional problem involving x and y
coordinates and at a y-surface, f(*) could be a function
of x alone, a function of ¢ alone or a function of x and
t. If f = f(x), then the boundary condition is denoted
BxI, I=2,...,6 (since /=0 and 1 are not needed
here). If f = f(x, t), then the notation B(x/tJ) (where
Iis for x and J for ¢) can be used. Generalization to
three-dimensional cases is direct ; e.g. f = f(x, z, f) has
the modifier B(xIzJtK) with appropriate values of 7,
J and X corresponding to x, z and ¢. The parentheses
are used to enclose notation for a single boundary.

5. INITIAL TEMPERATURE DISTRIBUTION

The initial temperature distribution is given in gen-
eral coordinates by

T(r,0) = F(r) (12)

and for a one-dimensional case with x being the coor-
dinate

T(x,0) = F(x). (13)

A numbering system for F(*) is proposed that is anal-
ogous to that for the boundary conditions (see Table
4). The coordinate r in Table 4 can represent any
single space coordinate such as r, x or ¢. Figure 4
displays some one-dimensional cases and gives the
numbers including the notation for the initial tem-

HMT 31:3-D

Table 4. Types of space-variable initial conditions

Notation Single space-variable initial condition
T- Arbitrary F(r)
70 F(ry=0
T1 Fr=C
T2 F(ry=Cr
T3 F(r)y=Cr*
T4 F(r) = exp (—ar)
TS5 step changes in F(r)
T6 sin (wr+ E), cos (wr+ E)

perature distribution. For two- and three-dimensional
cases see Figs. 5 and 6 which are discussed in Section
6.

6. EXAMPLES OF NUMBERING SYSTEM

The proposed numbering system can be used to
describe tens of thousands of one-dimensional cases
and more than millions for two- and three-dimen-
sional cases. Some one-dimensional cases are shown
in Fig. 4.

The first four cases of Fig. 4 are for the same basic
case of X21. Figure 4(a) depicts a plate with a constant
heat flux at x = 0 (boundary condition of the second
kind) and T = 0 at x = L (condition of the first kind).
The initial temperature is zero. The number for this
is X21B10T0 where the 1 following B is for ¢ = C at
x = 0and the 0 following B1 is for the T = 0 condition
at x = L (see Table 3). The problem of Fig. 4(b)
is insulated at x = 0, has a linear time variation of
temperature at x = L and has a zero initial tem-
perature ; its number is X21B0270. The two in B02
is for the linear time variation at x = L. Figure 4(c)
has f=0 at both boundaries but the initial tem-
perature is a linear function of x and thus is denoted
X21B00T?2. The case shown by Fig. 4(d) includes all
the non-zero f; and F values of Figs. 4(a)—(c).

The composite plate case shown in Fig. 4(e) has two
plates that are in perfect contact. At x = 0 there is a
constant heat flux and at the other boundary there is
a convective condition with the ambient temperature
varying in a sinusoidal manner. The initial tempera-
ture in the first plate is zero and 5°C in the second
plate. The number for this case is given on the figure.
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' L I |. L .I

T1=0 T=t - T=t
F=0 T=0
X

q=10

X21B02TO0 X21800T2 X21B12T12

b) c) d)
-2t

h=10 q=5e

9107 T =5 sin 2t
perfect contact
X2B1TOCX3B6T1 RO2B4T1
e) f)
Thin ring segment
Thin film
A F(a)=0
q=10t ¢
T=6
2
solid cylinder
ROAB2T20 1281310
9) h)

FIG. 4. Some one-dimensional examples of the numbering system.

Two cylindrical radial cases are shown in Figs. 4(f)
and (g). Figure 4(f) depicts a solid cylinder with a
heat flux of exponential form at » = a and the initial
temperature is a constant. Figure 4(g) is for a thin
film at the surface of a solid cylinder. There is an
applied heat flux at the surface of the thin film (or
there is an equivalent volume heating in the film). The
initial temperature in 0 < r < a is F(r) = 2r while the
initial temperature of the film is zero. For such cases
the T symbol must be followed by the indices for the
interior of the body and the film. They are given in
the order which they appear, starting » = 0. For this
case the number is R04B2720. Figure 4(h) is for a
segment of a thin ring.

Some two-dimensional cases are illustrated in Fig.
5. A rectangular plate is shown in Fig. 5(a). The num-
ber description in the x-direction is similar to that for
a one-dimensional case and it is then followed by the
one in the y-direction. Since the initial temperature

is known to be zero, it is redundant to repeat this
information with the y-direction notation. Another
two-dimensional case is shown by Fig. 5(b); it is for
a plate that is finite in the x-direction and semi-infinite
in the y-direction. For the x-direction the boundary
conditions are of the second and first kinds and are
homogeneous but the initial temperature distribution
is linear with x; thus this part of the notation is
X21B00T2. For the y-direction there is a step increase
in g at x = 0 and a step decrease at x = b and there is
no physical boundary for large y. Hence, the notation
in the y-direction is Y20Bx5 where the Bx5 notation
is for the steps in ¢ in the x-direction at the y =0
boundary. There is no y-direction dependence of the
initial temperature so it is omitted in the notation.

A case of a body outside the cylindrical radius of

= g is shown by Fig. 5(c). There is a sinusoidal
variation with ¢ of the surface heat flux and the initial
temperature distribution is constant. The notation is
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Table 5. Some basic one-dimensional cases in Carslaw and Jaeger [8]

Number Ref. Page Equation Comments
X00T5 cJ 54 3 T(x0)=Ty—a<x<a;T(x,0)=0,I|x]>a
X10B1T0 cJ 60 10
X10B3TQ CcJ 305 6 T0,0)=T"*n=1,2,...
X11B00T'1 cJ 96 6
X12B01T0 cJ 113 6 Better for small dimensionless times
X12B01TO cJ 113 5 Better for large dimensionless times
X13B10T0 cJ 126 16
X13B01T0 cJ 125 15
X20B1T7T0 cJ 75 6,7 The forms of solution
X21B01T0 cJ 100 2,4
X22B0170 cJ 112 4  Better for small dimensionless times
X22B01TO cJ 112 3 Better for large dimensionless times
X23B00T1 cJ 122 12 T(x,00)=Te0<x<L
X23B10T0 cJ 125 14
X23B02T0 cJ 127 9 To=kt
X24B01T00 CJ 128 5
X30B170 CJ 306 Second equation on page
X33B00T- CcJ 126 21  Arbitrary initial temperature
RO1BOT1 cJ 19 5
ROIB1TO CJ 331 3 Small time solution
RO2BITO cJ 203 1
RO3B1TO cJ 202 8
R11BOOT1 cJ 207 13
R21B10T0 CJ 334 12
RS01B0T1 CJ 348 6
RS02B1T0 cJ 242 1
RS03B0T1 CcJ 238 10

R20B¢$6T1900. The Bp6 describes the boundary con-
dition at r = a and no index is needed for r — oo since
there is no physical boundary.

Figure 5(d) displays a semi-infinite cylinder that is
insulated at all surfaces except at the center at the
top where a circular heat flux is applied. The initial
temperature is zero. The number for this case is
R02BOT0X20Br5 where the Br5S notation is used
because the heat flux is not constant with » but can be
considered to have a step increase at » = 0 and a step
decrease at.r = a. If the heat flux were over the circular
region shown and also varied as ct in time, Br5 would
be replaced by B(r5¢2) where the parentheses are used
to denote that both conditions apply at the same
boundary.

The numbering system readily extends to three-
dimensional cases such as given in Fig. 6. The first
case is for a semi-infinite rod that is insulated on all
surfaces except there is a constant heat flux over a
rectangular region at z = 0. The case of a rectangular
block is shown in Fig. 6(b), where front and side views
are shown.

7. ADVANTAGES OF NUMBERING SYSTEM

There are several types of advantages of the pro-
posed numbering system. The first to be discussed
in a subsection relates to a data base of conduction
solutions. The second relates to an algebra that can
be given for linear problems. The last major advantage

to be discussed relates to use of the method in con-
junction with Green’s functions to obtain solutions
for linear problems.

7.1. Data base in transient heat conduction

One of the obvious advantages of a numbering
system is that it facilitates the organizing of a data
base. A structure is provided that makes the storage
of solutions easier. Also important is that it greatly
reduces the effort in locating solutions. Instead of
relying on imprecise verbal titles of papers (or
abstracts) to describe a particular problem, a search
based on the notation given herein can be much more
direct and less prone to overlook related solutions.

The proposed numbering system has been utilized
to catalog most of the solutions of Carslaw and Jaeger
[8], Luikov [9], Ozisik [6] and other books. It has been
found to work very well. An example of a portion of
a data base for some basic solutions is given in Table
5. A more extensive data base is available from the
author [10]. These solutions are for constant prop-
erties but the numbering system can also be used for
temperature-variable properties ; in such cases, appro-
priate.comments would be added.

Table 5 gives some numbers of some one-dimen-
sional cases for the x, cylindrical radial, and spherical
radial cases. The first column contains the number;
the second column gives the reference (which is CJ in
Table 5), denoting Carslaw and Jaeger [8] ; the third
and fourth columns give the page and equation num-
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vh
T=C
N .
/— h=5

F(x,y)=0 T =200
T=0 /| ®

Z a X

q=5¢t
X1380170Y21B21

a)

F(r,¢)=100

R20B¢6T1400
¢)

v

/

7

7

4 Flxyl=2x T=0

7]

7

Y namimal .
ii gi//////// X

o=

X21B00T2Y20Bx5

b)

RO2BOTOX20BrS
d)

F1G. 5. Two-dimensional examples of the numbering system.

bers of the reference; and the last column contains
some comments. In more extensive versions of the
computerized data base, the solution could be given,
evaluated and plotted.

7.2. Algebra for linear cases

For linear cases several kinds of algebraic manipu-
lations are possible. This brief discussion can include
only a few possibilities.

One case involves boundary conditions of the
zeroth, first, and third kinds and the uniform initial
temperature distribution. An example is

:FXIOBITOIT(O.A')=T,J = TO(I _TXIOBOTIIT(x,0)= l) (14)

where T, is a constant. The notation means the tem-
perature for the subscripted case.

In addition to relating boundary conditions and the
initial temperature, the notation suggests a method
of superimposing solutions. The number of non-zero
values of the indices following B and T give the num-
ber of superposition problems that can be formed;
this is the number of ‘forcing’ terms. An example is
provided by the first four cases of Fig. 4. The Fig. 4(d)

case is the sum of the first three
X21B12T2 = X21B10T0+ X21B02T0

+X21B00T2. (15)

Notice that B12 contains two non-zero digits and 72
contains one ; hence, the case of Fig. 4(d) can be given
as the sum of three problems. The same superposition
principles can be used for the two-dimensional prob-
lem of Fig. 5(a).

Another type of superposition is possible for more
than one forcing term at a boundary. An example is
for the Fig. 4(a) case with

go = 10+5t. (16)

The temperature solution can be written as

qu°= 1045 — IOTXZ!BIOTOqu= H + 5TX21820T01%=:'
amn

7.3. Use of numbering system for obtaining solutions

Another important advantage of the numbering
system is for aiding in the generation of solutions
through the use of Green’s functions.
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z  F{x,y,2)=0

For all vertical
surfaces, g=0

S g

X22B00TOY22B00Z20B(x5y5)
a)
y
/"hﬁx ¥
b . b
. h=100 b \ -
/ =
) Fxyy,z)= = 7 N
- (x,y,2)=300  |T_=1000 7 W
/] N
T_=500 ’ —
g=10t / N
0 /_ oﬁ N
0 Front View a  x 0 Side View ¢ z
b) X33B11T1Y21Bt2x2222B0x5

FiG. 6. Three-dimensional examples of the numbering system.

A general form of the Green’s function solution for
linear transient heat conduction problems is given in
ref. [4]. For two-dimensional Cartesian problems such
as shown in Figs. S(a) and (b), the Green’s function
solution is

Tx,y,0) = J j G(x, y, 1lx', y', OO F(x', y') dx' dy’

X WY

o t 1
+ ;J: Y | SV OG(x, y, tlxi, v, 7) ds; d
=0 fm 1 JS;

boundary conditions of the second and third
kinds

—°‘f Z RA L i dsjdr  (18)
=0 j=1J5 jr—r

boundary conditions of the first kind only

where G(x,y,t|x’,y",1) is the Green’s function; a is
thermal diffusivity; f; and f; are the non-homo-
geneous terms for the i and j boundaries; I is the
number of boundary conditions of the second and
third kinds; and J is the number of boundary con-
ditions of the first kind. The number of terms in equa-
tion (18)

I+J+1Gf F(x,y) #0) and I+J (if F(x,y) = 0)

is the same number of non-zero terms following Band
T in the notation. For Fig. 5(a), for example, [ = 2
which includes one non-zero boundary condition of
the second kind at y = 0 and one non-zero bound-
ary condition of the third kind at x = a; and there is
one non-zero boundary condition of the first kind at
y = band thus J = 1. Since F(x,y) = 0, there is a total
of three parts to the Green’s function solution. The
solution for Fig. 5(a) can be written as

T(x,p,1) = fz j: . L 56y, i, 0,0 dx' de

X13B00TOY21B20

i b
+5£ j 1000G(x, y, t|a, y',7) dy’ dz
kheolbi=o

X13B01T0Y21800

_({[ J 5G(x y,tllx ,b, 1:) drdr (19)
== £

X13B00T0Y21801

The associated problems are indicated by the numbers
below each integral. Another significant relation of
the numbering system to the Green’s function solution
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is that the numbering system denotes which Green’s
function is needed. That is, each G(*) in equation (19)
is the same and can be denoted

G() = Gxisrai (X, 10X, ), 7).

Furthermore, for the rectangular coordinate system,
the two- and three-dimensional Green’s functions can
be formed by products of the one-dimensional
Green’s functions ; for this case the relation is simply

GXI3Y21 (xay’ tIX',y’; t)

= Gy13(x, X', 7)Gya2 (¥, 1y, 7). (20)

These one-dimensional Green’s functions are tabu-
lated in refs. [4, 5] and elsewhere. By taking advantage
of short and long time expressions of the Green’s
functions, reduced computation and increased accu-
racy can sometimes be obtained [11].

The principle of multiplying the one-dimensional
Green’s function can also be used for the x, y coor-
dinates of Fig. 5(b) and the r, x coordinates of Fig.
5(d) but not for the r, ¢ coordinates of Fig. 5(c).

8. SUMMARY AND CONCLUSIONS

The previously proposed numbering system for
transient conduction is extended in this paper to
describe space variation of the initial temperature dis-
tribution, and time and space variation of the bound-
ary conditions. Various interface conditions are also
included. The numbering system is shown to have
many advantages which include providing a basis for
a data base, providing more insight into the solutions,
and providing a simplified solution method in con-
nection with Green’s functions.

Though the proposed numbering system covers an
enormous number of possible cases, the system can
readily be extended to cover other conditions such as

volume heat sources, fins, and bulk movement of the
body. Moreover, the number system provides a proto-
type for describing other fields such as heat convection
and wave motion.
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SYSTEMES DE DENOMBREMENT DE LA CONDUCTION THERMIQUE POUR DES
GEOMETRIES DE BASE

Résumé—Un systéme de dénombrement pour des solutions de conduction thermique variable est proposé.

11 construit sur des usages connus des descriptions des conditions aux limites. On inclut des géométries a

une, deux et trois dimensions. Un systéme unique de dénombrement est proposé pour décrire des conditions

aux limites, & I'interface et initiales. Des exemples d’utilisation de cette notation sont donnés. On note les
avantages de ce systéme.

NUMMERNSYSTEM FUR WARMELEITUNG IN GRUNDLEGENDEN GEOMETRIEN

Zusammenfassung—Es wird ein Nummernsystem zur Lésung transienter Wéirmeleitvorgz'inge vor-

geschlagen. Dieses baut auf fritheren Formulierungen der Randbedmgungen auf. Ein-, zwei- und drei-

dimensionale Geometrien werden beriicksichtigt. Desweiteren wird ein Nummernsystem zur Beschrelbung

von Rand-Schnittstellen und Anfarigsbedingungen vorgestellt. Die Anwendung der Notation wird an
Beispielen gezeigt. Die Vorteile des Systems werden vorgestelit.
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CHUCTEMA 3AITMCH 3AJAYU TEIUIONMPOBOJHOCTHU AV OCHOBHBIX TEOMETPHA

Amsoramms—TJIpenioxeHa yHHBEPCA/IbHAN CHCTEMA 3aNHCH PELICHHN 3a0awd HCCTaUHOHAPHOR TeILTO-

NPOBOAHOCTH, OCHOBAHHAR HA MCMOJIb30BAHHM HIBCCTHHIX PAHMYHBIX YCTIOBHH H BKTIOYANOWIAS OAHO-,

ABYX- H TPEXMEpHbIe reoMeTpHB. KpoMe TOro, NpeioxeHa YHRHBEPCAILHAN CHCTEMA 3aANBCH HAYANbHLIX

H TPAHAYELIX YCIOBHi, 8 Taxxe ycnopuit Ha Mexdasupix rpannuax. [IpppoasTC NPUMEPE! HCIIOB30BA-
HHA 3TOH CHCTEMBI 3aIIHCH H OTMCUAIOTCH e¢ JOCTOHHCTBA,



