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Abstract-A numbering system for transient heat conduction solutions is proposed. It builds on previous 
usage of the descriptions of boundary conditions. One-, two- and three-dimensional geometries are included. 
Furthermore, a unique numbering system is proposed to describe boundary, interface, and initial 

conditions. Examples of the use of the notation are given. Advantages of the system are noted. 

1. INTRODUCTION 

THE NUMBER of exact solutions in transient heat 
conduction and diffusion is extremely large and is 
growing. These solutions are needed for thermal 
modeling of various devices, as test cases for finite 
difference/element programs, and as influence func- 
tions for the unsteady surface element method [I, 21. 
Solutions are given in many different pamphlets, and 
government and industry reports. Due to the lack of 
organization of the solutions, it was formerly easier 
to rederive a solution than to search for it. With the 
advent of extremely large and relatively inexpensive 
computer memories, the development of specialized 
data bases has become practical and they exist in 
medicine, law and many other fields. One paper on 
using artificial intelligence for heat transfer problems 
has been written by Sharma and Minkowycz [3]. Data 
bases are used by expert systems. In developing such 
systems, it is very useful to have a numbering system 
to organize the information. 

The purpose of this paper is to propose a numbering 
system for transient heat conduction. Such a system 
will not only simplify construction of a computer data 
base but it will make deriving new solutions simpler 
and locating solutions less tedious. 

This paper deals with exact solutions. However, the 
numbering system can be employed for nonlinearities 
caused by temperature-variable properties. Basic 
geometries such as plates, cylinders and spheres are 
considered. Irregular geometries such as plates with 
several randomly spaced holes are not covered. 

A numbering system for the basic geometries and 
boundary conditions is given in refs. [4, 51 and is 
described in the next section. That numbering system 
is used as a starting point in this paper. The proposed 

numbering system extends the notation to describe 
the initial spatial temperature variation and the time- 
variation of the boundary conditions. In addition, 
interface conditions between bodies are covered. 

The numbering system in this paper is s~cificaliy 
developed for transient diffusion and heat conduction. 
The same concepts, however, are applicable to other 
fields such as convective heat transfer, fluid mechanics 
and wave phenomena. Steady state is also covered 
because it is included by the transient notation. 

The plan of this paper is to first review the num- 
bering system for geometry and boundary conditions 
in Section 2. A new scheme for describing interface 
conditions is given in Section 3. Section 4 provides a 
numbering system that describes the time and/or 
space variations of the non-homogeneous term at a 
boundary. Section 5 gives an initial tem~rat~e dis- 
tribution numbering system and Section 6 gives some 
examples of the numbering system. Section 7 discusses 
some advantages of the numbering system; these 
include aiding in the development and use of a data 
base in transient conduction, development of an 
algebra for linear cases, and aiding in de~vation of 
exact solutions. 

2. GEOMETRY AND BOUNDARY CONDITION 

NUMBERING SYSTEM 

A nosing system for basic geometries and types 
of boundary conditions is given in refs. [4,5]. For the 
rectangular coordinate system the symbol X is used 
to denote the x-coordinate, Y is used to denote the y- 
direction and Z is used to denote the z-direction. For 
a two-dimensional problem, X and Y are used ; for a 
thr~-dimensional problem, X, Y and Z are used. The 
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NOMENCLATURE 

b film thickness RS notation for spherical radial coordinate 
B notation for boundary condition t time 

modifier T(r, t) temperature 
c specific heat T notation for initial condition 

Xt) 

notation for interface condition space coordinate 
non-homogeneous boundary condition f notation for rectangular coordinate in 
term x-direction 

F(x) initial temperature distribution Y space coordinate 
G(x, tlx’, 7) Green’s function Z space coordinate. 
h heat transfer coefficient 
k thermal conductivity Greek symbols 
n normal coordinate e spherical angular coordinate 
r radial coordinate P density 
R notation for cylindrical radial coordinate 4 angular coordinate. 

three-dimensional equation for transient conduction 
with constant, isotropic thermal conductivity, k, is 

ra2T a2T a2T-l aT 

where T is temperature, p is density, c is specific heat 
and t is time. Though k and pc are considered constant 
in most analytical solutions, a method for including a 
reference to variable properties is given in the pro- 
posed numbering system. 

For the cylindrical coordinates, r, 4, x, the symbol 
R is for r, Q is for the angle 4 and X is for the axial 
coordinate. For constant k, the three-dimensional 
equation is 

For the spherical coordinate system, r, 4, 0, the sym- 
bols are RS, @, 0. The symbol RS is used to denote 
radial in the spherical direction. The angle 4 for both 
the cylindrical and spherical coordinate goes from 0 
to 2n. 

Six different boundary conditions are given in refs. 
[4, 51 and are numbered 0, 1, 2, 3,4 and 5 (see Table 
1). The first, second, and third kinds are commonly 
denoted as such in the American and Russian litera- 
ture. In Ozisik’s recent excellent book [6] on heat 
conduction, these three boundary conditions are also 
referred to as the first, second and third kinds. They 

are also used in the book by Mikhailov and Ozisik 
[7]. Carslaw and Jaeger [8] discuss all the boundary 
conditions mentioned above, including the fourth and 
fifth kinds, but do not use the words first kind, etc. In 
the Russian translation of the book by Luikov [9], the 
words “boundary conditions of the first, second and 
third kind” are consistently used. Unfortunately what 
Luikov calls the “boundary condition of the fourth 
kind” is not really a boundary condition but a variety 
of composite body problems. 

The jirst kind of boundary condition (Dirichlet) is 
the prescribed temperature at boundary i 

T(ri, t) = f;(ri, t) (3) 

where f;(ri, t) is the space and time dependent surface 
temperature. For a one-dimensional case at x = 0, 
xc) can be a function of time only, such as 
T(0, t) = f,(t). For a two-dimensional case with coor- 
dinates, (x, y), and x = x, 

T(x,,Y, t) = fi(Y, 0. 

The second kind of boundary condition (Neumann) 
is prescribed heat flux 

kg = _h, 0 
1 rc 

where n, is an outward pointing normal. For a one- 
dimensional case of boundaries at x, = 0 and x2 = L, 
n, = -x and n2 = x; the boundary conditions are 

Table 1. Types of boundary conditions 

Notation Name of boundary condition Description of boundary condition 

0 Zeroth kind (natural) No physical boundary 
1 Dirichlet Prescribed temperature, equation (3) 
2 Neumann Prescribed heat flux, equation (4) 
3 Robin Convective condition, equation (6) 
4 Fourth kind (Carslaw) Thin film, no convection, equation (7) 
5 Fifth kind (Jaeger) Thin film, convection, equation (8) 
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7 infinite geometry 

&I 
x10 

x20 

X30 n x40 

X50 

No steady state (zero eigenvalue) 

21 cases 

501 

FIG. 1. Distinct cases for one-dimensional Cartesian geometries. 

-kaT 
ax x=o 

= fi(O, kg = = fdt) (5a, b) 
x L 

and f,(t) and f*(t) are heat fluxes directed toward the 
surfaces. 

The third kind (Robin) is a convective condition 

(6) 

where hi is the heat transfer coefficient and f;(ri, t) 
is usually equal to hiT, with T, being the ambient 
temperature, but x(ri, t) can also include a prescribed 
heat flux. 

The fourth kind (Carslaw) is for a thin film at a 
surface with a prescribed heat flux, f;c) 

kg = j&, t) - (p~b)~; . (7) 
’ I, r, 

The product (p~b)~ is for the film at the ith surface 
and b, is its thickness. This boundary condition can 
also describe a well-stirred fluid. 

The fifth kind (Jaeger) of boundary condition is 
also for a thin film but permits heat losses from the 
film by convection 

Another important case is the zeroth kind. It is for 
conditions for which there is no physical boundary ; 
it is sometimes called a natural boundary condition. It 
includes several cases. In the rectangular coordinates, 
the zeroth kind exists when a boundary extends to 
infinity. For example, a semi-infinite body that is con- 
vectively heated at x = 0 is denoted X30. Another is 
for the center of radial cylindrical and spherical bodies 
that are solid. A solid cylinder with a prescribed sur- 
face heat flux is denoted R02. The case associated 
with a convective boundary condition at r = a and 
a spherical domain outside r = a is denoted RS30. 
Another case is for a thin annular ring which is 
denoted WO. 

Cases included in this numbering system are illus- 
trated by Figs. l-3. The first is for the Cartesian coor- 
dinate x and includes 21 distinct cases ; others such as 
X12 can be listed but these can be found by a simple 
change of coordinates (i.e. x --) L-x, where L is the 
plate thickness). Notice that the cylindrical radial case 
shown in Fig. 2 includes 26 cases because the RIO 
(I= l,..., 5) geometries are quite different from the 
ROZ geometries, the former being the infinite region 
bounded internally by the radius r = a and the latter 
for solid cylinders of radius a. The annular geometries 
have neither Z nor J in RN equal to zero and have 
boundary radii of a and b. The spherical radial cases, 

r infinite geometry /-- solid cylinder 

No steady State (zero eigenvalues) 

26 came 

L!!fz .“O 
cylinder 

FIG. 2. Distinct cases for one-dimensional radial geometries. 
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,complete ring 

No steady state 

partial ring 

FIG. 3. Distinct cases for ring geometries 

RSIJ, can be displayed as Fig. 2 with R replaced by 
RX For the cylindrical coordinate 4 and small 
changes in r, a ring is obtained ; cases are displayed in 
Fig. 3. The special case in Fig. 3 is for a complete ring. 
There are neither @OZnor @IO cases with I # 0. Except 
for the @OO case, the cases in Fig. 3 have the same 
mathematical solution as the corresponding XZJ cases 
of Fig. 1. 

There are three special finite-body cases in Fig. 1 
which (usually) have no steady state ; namely, X22, 
X42 and X44. There are five such special cases in Fig. 
2 and four in Fig. 3. Mathematically, these cases are 
associated with zero eigenvalues. From a physical per- 
spective, these cases do not have a steady state for 
time-independent values of jJc) in equation (4) or (7) 
(unless there is the special case of zero net heat added). 
The @OO case is unique since there are no physical 
boundaries; however, in this case (and the special 
finite body cases) there is no steady state for a constant 
volume source in the respective bodies. 

For the infinite geometries of Figs. 1 and 2, i.e. the 
first column in both figures, steady state is not usually 
attained in finite times. 

3. INTERFACE DESCRIPTORS 

The proposed numbering system includes com- 
posite bodies. The interface conditions are denoted in 
a manner similar to the boundary conditions. For 
perfect contact, the letter C is used for each side of 
the interface. 

For other conditions the letter C is followed by a 
single digit and enclosed in parentheses (see Table 2). 
The notation, (C2), is used to denote a perfect contact 

Table 2. Types of interface conditions 

Notation Description of interface condition 

ii; 

Perfect contact 
Perfect contact with source at interface 
Finite contact conductance 
Thin film at interface, perfect contact 
Thin film, finite contact conductances 

( zero eigenvalue) 

16 cases 

with a heat source at the interface. This is a gradient 
condition and hence is analogous to the second kind 
of boundary condition. The notation, (C3), is used to 
denote an imperfect contact that can be described by 
a contact conductance, h, 

-k-g,_=h,(T,;-Try)= -k+g . (9) 
r: 

The (C4) case is for a thin film (or well-stirred fluid) 
in perfect contact at the interface 

ar 
-k+ _ = (pcb),; 

r, 
(10) + 

‘t 

where (p~b)~ is for the thin film or well-stirred fluid. 
The (CS) interface condition is 

_k- i2_T 
ar _ = K CT,; - T,,) + (pcb), f$ 

r, r, 

+h:(T,-T,,+) = -k+ a$ (11) 
r: 

There is a thin film at the interface with contact con- 
ductances on both sides (or a well-stirred fluid with 
heat transfer coefficients on both sides). The subscript 
ri is for the thin film ; r; is for the interface on the 
left; and r: is for the interface on the right-hand side. 

4. BOUNDARY CONDITION MODIFIERS 

The boundary conditions of the first through fifth 
kinds are denoted as indicated in Section 2 but the 
time and/or space variation must also be specified. 
This means that the function fi(r,, t) in equations (3), 
(4), and (6)-(8) must be described. For one-dimen- 
sional cases, J is only a function of time. The one- 
dimensional case is first considered and then two- and 
three-dimensional cases are discussed. 

For one-dimensional cases the function J(t) 
includes zero (denoted BO), constant with time (Bl) 
(actually a step increase at t = 0), linear with time 
(B2), some power other than 1 oft (B3), exponentials 
(B4), two or more step changes (BS), and sinusoids 
(B6) (see Table 3). Only the basic cases are given 
specific notation. Solutions permitting an arbitrary 
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Table 3. Types of time- and space-variable function at boundary conditions 

Time-variable Space-variable 
Notation boundary function Notation boundary function (two-dimensional) 

B- Arbitrary f(t) Bx- Arbitrary f(x) 
BO f(t) = 0 
Bl f(t) = c 
B2 f(l) = Cl Bx2 
B3 f(t) = CP Bx3 

$?;I? 
X XP 

B4 f(t) = exp (-at) Bx4 f(x) = exp ( -ax) 
B5 step changes in f (t) Bx5 step changes in f (x) 
B6 sin(ot+E),cos(ot+E) Bx6 sin (wx + E), cos (ox + E) 

time variation are indicated by a dash, - (see Table 

5). 
For homogeneous one-, two-, or three-dimensional 

bodies, the geometry and boundary condition descrip- 
tors are followed by the boundary condition modifier, 
BZJ. An example is Xl2B 14 where B 14 indicates that 
the boundary condition of the first kind (prescribed 
temperature) at x = 0 is a non-zero constant and the 
boundary condition of the second kind (prescribed q) 

at x = L has an exponential dependence on time. In 
general, two indices follow B but there is an exception. 
Only one index is needed when there is a boundary 
condition of the zeroth kind such as X20B 1 or R03B 1, 
where the Bl’s describe the non-zero boundary con- 
ditions. If both boundaries are of the zeroth kind (e.g. 
X00, ROO and NO), then the B modifier is not used. 

For two-dimensional cases the variation off(-) at 
a boundary can be a function of space as well as time. 
For a two-dimensional problem involving x and y 
coordinates and at a y-surface, f c) could be a function 
of x alone, a function oft alone or a function of x and 
t. Iff = f(x), then the boundary condition is denoted 
Bxl, I = 2,. . . , 6 (since I = 0 and 1 are not needed 
here). Iff = f(x, t), then the notation B(xZtJ) (where 
Z is for x and J for t) can be used. Generalization to 
three-dimensional cases is direct ; e.g.f=f(x, z, t) has 
the modifier B(xZzJtK) with appropriate values of Z, 
J and K corresponding to x, z and t. The parentheses 
are used to enclose notation for a single boundary. 

5. INITIAL TEMPERATURE DISTRIBUTION 

The initial temperature distribution is given in gen- 
eral coordinates by 

T(r, 0) = F(r) (12) 

and for a one-dimensional case with x being the coor- 
dinate 

T(x, 0) = F(x). (13) 

A numbering system for F(-) is proposed that is anal- 
ogous to that for the boundary conditions (see Table 
4). The coordinate r in Table 4 can represent any 
single space coordinate such as r, x or q%. Figure 4 
displays some one-dimensional cases and gives the 
numbers including the notation for the initial tem- 

Table 4. Types of space-variable initial conditions 

Notation 

T- 
TO 
Tl 
T2 
T3 
T4 
T5 
T6 

Single space-variable initial condition 

Arbitrary F(r) 
F(r) = 0 
F(r) = C 
F(r) = Cr 
F(r) = Crp 
F(r) = exp (-or) 
step changes in F(r) 
sin (or + E), cos (wr + E) 

perature distribution. For two- and three-dimensional 
cases see Figs. 5 and 6 which are discussed in Section 
6. 

6. EXAMPLES OF NUMBERING SYSTEM 

The proposed numbering system can be used to 
describe tens of thousands of one-dimensional cases 
and more than millions for two- and three-dimen- 
sional cases. Some one-dimensional cases are shown 
in Fig. 4. 

The first four cases of Fig. 4 are for the same basic 
case of X21. Figure 4(a) depicts a plate with a constant 
heat flux at x = 0 (boundary condition of the second 
kind) and T = 0 at x = L (condition of the first kind). 
The initial temperature is zero. The number for this 
is X2lBlOTO where the 1 following B is for q = C at 
x = 0 and the 0 following B 1 is for the T = 0 condition 
at x = L (see Table 3). The problem of Fig. 4(b) 
is insulated at x = 0, has a linear time variation of 
temperature at x = L and has a zero initial tem- 
perature; its number is X2lB02TO. The two in B02 
is for the linear time variation at x = L. Figure 4(c) 
has f= 0 at both boundaries but the initial tem- 
perature is a linear function of x and thus is denoted 
X21BOOT2. The case shown by Fig. 4(d) includes all 
the non-zero A and F values of Figs. 4(a)-(c). 

The composite plate case shown in Fig. 4(e) has two 
plates that are in perfect contact. At x = 0 there is a 
constant heat flux and at the other boundary there is 
a convective condition with the ambient temperature 
varying in a sinusoidal manner. The initial tempera- 
ture in the first plate is zero and 5°C in the second 
plate. The number for this case is given on the figure. 
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a) b) cl d) 

X2BlTOCX3B6Tl 

e) f) 

,-Thin ring segment 

@iJd cy,inder f=Jg 
9) 

~O4B2’1120 +12B13TO 

h) 

FIG. 4. Some one-dimensional examples of the numbering system. 

Two cylindrical radial cases are shown in Figs. 4(f) 
and (g). Figure 4(f) depicts a solid cylinder with a 
heat flux of exponential form at r = a and the initial 
temperature is a constant. Figure 4(g) is for a thin 
film at the surface of a solid cylinder. There is an 
applied heat flux at the surface of the thin film (or 
there is an equivalent volume heating in the film). The 
initial temperature in 0 < r < u is F(r) = 2r while the 
initial temperature of the film is zero. For such cases 
the T symbol must be followed by the indices for the 
interior of the body and the film. They are given in 
the order which they appear, starting r = 0. For this 
case the number is RO4B2T20. Figure 4(h) is for a 
segment of a thin ring. 

Some two-dimensional cases are illustrated in Fig. 
5. A rectangular plate is shown in Fig. S(a). The num- 
ber description in the x-direction is similar to that for 
a one-dimensional case and it is then followed by the 
one in the y-direction. Since the initial temperature 

is known to be zero, it is redundant to repeat this 
information with the y-direction notation. Another 
two-dimensional case is shown by Fig. 5(b) ; it is for 
a plate that is finite in the x-direction and semi-infinite 
in the y-direction. For the x-direction the boundary 
conditions are of the second and first kinds and are 
homogeneous but the initial temperature distribution 
is linear with x; thus this part of the notation is 
X21BOOT2. For the y-direction there is a step increase 
in q at x = 0 and a step decrease at x = b and there is 
no physical boundary for large y. Hence, the notation 
in the y-direction is Y2OBxS where the Bx5 notation 
is for the steps in q in the x-direction at the y = 0 
boundary. There is no y-direction dependence of the 
initial temperature so it is omitted in the notation. 

A case of a body outside the cylindrical radius of 
r = a is shown by Fig. S(c). There is a sinusoidal 
variation with #J of the surface heat flux and the initial 
temperature distribution is constant. The notation is 
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Table 5. Some basic one-dimensional cases in Carslaw and Jaeger [8] 

Number Ref. Page Equation Comments 

XOOTS 
XlOBlTO 
XIOB3TO 
X1 IBOOTI 
X12BOl TO 
XlZBOlTO 
X13BlOTO 
X13BOlTO 
X2OB 1 TO 
X21BOl TO 
X22BOl TO 
X22BO 1 TO 
X23BOOTl 
X23BlOTO 
X23BO2TO 
X24BOl TOO 
X3OB 1 TO 
X33BOOT- 
ROlBOTl 
ROlBlTO 
R02BlTO 
R03BlTO 
RllBOOTl 
R21BlOTO 
RSOlBOTl 
RSOZB 1 TO 
RS03BOTI 

CJ 54 

z 3: 
CJ 96 
CJ 113 
CJ 113 
CJ 126 
CJ 125 
CJ 75 
CJ 100 
CJ 112 
CJ 112 
CJ 122 
CJ 125 
CJ 127 

z ::: 

z ::: 
CJ 331 
CJ 203 
CJ 202 
CJ 207 
CJ 334 
CJ 348 
CJ 242 
CJ 238 

3 
10 
6 
6 
6 
5 

16 
15 

6,7 
2,4 

4 
3 

12 
14 
9 
5 

21 
5 
3 
1 
8 

13 
12 
6 
1 

10 

T(x,O) = To-a <x < a; T&O) = 0,1x1 > a 

T(O,f)=T,t@,n=1,2 ,... 

getter for small dimensionless times 
getter for large dimensionless times 

The forms of solution 

Better for small dimensionless times 
Better for large dimensionless times 
T(x,O)=T,,O<x<L 

T, = kt 

Second equation on page 
Arbitrary initial temperature 

Small time solution 

R20B46Tl#OO. The B46 describes the boundarycon- to be discussed relates to use of the method in con- 
dition at r = a and no index is needed for r + co since junction with Green’s functions to obtain solutions 
there is no physical boundary. for linear problems. 

Figure S(d) displays a semi-infinite cylinder that is 
insulated at all surfaces except at the center at the 
top where a circular heat flux is applied. The initial 
temperature is zero. The number for this case is 
R02BOTOX20BrS where the Br5 notation is used 
because the heat flux is not constant with r but can be 
considered to have a step increase at r = 0 and a step 
decrease at r = a. If the heat flux were over the circular 
region shown and also varied as ct in time, Br5 would 
be replaced by B(r5t2) where the parentheses are used 
to denote that both conditions apply at the same 
boundary. 

7.1. Data base in transient heat conduction 
One of the obvious advantages of a numbering 

system is that it facilitates the organizing of a data 
base. A structure is provided that makes the storage 
of solutions easier. Also important is that it greatly 
reduces the effort in locating solutions. Instead of 
relying on imprecise verbal titles of papers (or 
abstracts) to describe a particular problem, a search 
based on the notation given herein can be much more 
direct and less prone to overlook related solutions. 

The numbering system readily extends to three- 
dimensional cases such as given in Fig. 6. The first 
case is for a semi-infinite rod that is insulated on all 
surfaces except there is a constant heat flux over a 
rectangular region at z = 0. The case of a rectangular 
block is shown in Fig. 6(b), where front and side views 
are shown. 

7. ADVANTAGES OF NUMBERING SYSTEM 

The proposed numbering system has been utilized 
to catalog most of the solutions of Carslaw and Jaeger 
[8], Luikov [9], Ozisik [6] and other books. It has been 
found to work very well. An example of a portion of 
a data base for some basic solutions is given in Table 
5. A more extensive data base is available from the 
author [lo]. These solutions are for constant prop- 
erties but the numbering system can also be used for 
temperature-variable properties ; in such cases, appro- 
priate comments would be added. 

There are several types of advantages of the pro- 
posed numbering system. The first to be discussed 
in a subsection relates to a data base of conduction 
solutions. The second relates to an algebra that can 
be given for linear problems. The last major advantage 

Table 5 gives some numbers of some one-dimen- 
sional cases for the x, cylindrical radial, and spherical 
radial cases. The first column contains the number ; 
the second column gives the reference (which is CJ in 
Table 5), denoting Carslaw and Jaeger [8] ; the third 
and fourth columns give the page and equation num- 
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T=O 

/ 
,/-T=O 

/ 
/ 

f .f_ Km”” 

L 
X 

q=l 

R2OB+6Tl#OO 

c) 

R02BOTOX2OBrS 

d) 

FIG. 5. Two-dimensional examples of the numbering system. 

bers of the reference ; and the last column contains 
some comments. In more extensive versions of the 
computerized data base, the solution could be given, 
evaluated and plotted. 

7.2. Algebra for linear cases 
For linear cases several kinds of algebraic manipu- 

lations are possible. This brief discussion can include 
only a few possibilities. 

One case involves boundary conditions of the 
zeroth, first, and third kinds and the uniform initial 
temperature distribution. An example is 

T XlOBlTO T(O.,)=To = ~,(1-TT,,oaorrlrrx.o,=,) (14) 

where To is a constant. The notation means the tem- 
perature for the subscripted case. 

In addition to relating boundary conditions and the 
initial temperature, the notation suggests a method 
of superimposing solutions. The number of non-zero 
values of the indices following B and T give the num- 
ber of superposition problems that can be formed ; 
this is the number of ‘forcing’ terms. An example is 
provided by the first four cases of Fig. 4. The Fig. 4(d) 

case is the sum of the first three 

X21B12T2 = X21BlOTO+X21B02TO 

+X21BOOT2. (15) 

Notice that B 12 contains two non-zero digits and 7’2 
contains one ; hence, the case of Fig. 4(d) can be given 
as the sum of three problems. The same superposition 
principles can be used for the two-dimensional prob- 
lem of Fig. 5(a). 

Another type of superposition is possible for more 
than one forcing term at a boundary. An example is 
for the Fig. 4(a) case with 

q(J = 10+5t. (16) 

The temperature solution can be written as 

7.3. Use of numbering system for obtaining solutions 
Another important advantage of the numbering 

system is for aiding in the generation of solutions 
through the use of Green’s functions. 
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For all vertical 

b Ih=‘“” 
h=5 I F(x,y,z)=300 

I 

T_=lOOO 

0 Front View a x 

k3 q=500 

b) X33B11T1P21Bt2x2Z22BOx5 
FIG. 6. Three-dimensional examples of the numbering system. 

A general form of the Green’s function solution for 
linear transient heat conduction problems is given in 
ref. [4]. For two-dimensional Cartesian problems such 
as shown in Figs. 5(a) and (b), the Green’s function 
solution is 

G(x, y, t]x’, y’, O)F(x’, y’) dx’ dy’ 

boundary conditions of the second and third 
kinds 

-a ds;d7 (18) 
rl 

boundary conditions of the first kind only 

where G(x, y, t/x’, y’, 7) is the Green’s function; a is 
thermal ditlusivity ; fi and fj are the non-homo- 
geneous terms for the i and j boundaries ; Z is the 
number of boundary conditions of the second and 
third kinds ; and J is the number of boundary con- 
ditions of the first kind. The number of terms in equa- 
tion (18) 

Z+ Jf 1 (if &‘(x, y) f 0) and Z+.Z (if E’(x, y) = 0) 

is the same number of non-zero terms following B and 
T in the notation. For Fig. 5(a), for example, I = 2 
which includes one non-zero boundary condition of 
the second kind at y = 0 and one non-zero bound- 
ary condition of the third kind at x = a ; and there is 
one non-zero boundary condition of the first kind at 
y = b and thus J = 1. Since F(x, y) = 0, there is a total 
of three parts to the Green’s function solution. The 
solution for Fig. 5(a) can be written as 

57G(x, y, t/x’, 0,~) dx’ d7 

lOOOG(x,y, tla,y’, 7) dy’dz 

-a 
C Wx, Y, W, b, 7) 

8Y‘ 
dx’d7 (19) 

X13BOOTOY21BO1 

The associated problems are indicated by the numbers 
below each integral. Another significant relation of 
the numbering system to the Green’s function solution 
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is that the numbering system denotes which Green’s volume heat sources, fins, and bulk movement of the 
function is needed. That is, each Gc) in equation (19) body. Moreover, the number system provides a proto- 
is the same and can be denoted type for describing other fields such as heat convection 

GC) = Gx,~Y~I(x,Y,~Ix’,Y’,~). 
and wave motion. 
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the two- and three-dimensional Green’s functions can 21499. 

be formed by products of the one-dimensional 
Green’s functions ; for this case the relation is simply 

= G,,,(x, W, ~)GYzI(Y, ~IY’, 2). (20) 

These one-dimensional Green’s functions are tabu- 
lated in refs. [4,5] and elsewhere. By taking advantage 
of short and long time expressions of the Green’s 
functions, reduced computation and increased accu- 
racy can sometimes be obtained [ 111. 

The principle of multiplying the one-dimensional 
Green’s function can also be used for the x, y coor- 
dinates of Fig. 5(b) and the r,x coordinates of Fig. 
5(d) but not for the r, r#~ coordinates of Fig. 5(c). 

8. SUMMARY AND CONCLUSIONS 

The previously proposed numbering system for 
transient conduction is extended in this paper to 
describe space variation of the initial temperature dis- 
tribution, and time and space variation of the bound- 
ary conditions. Various interface conditions are also 
included. The numbering system is shown to have 
many advantages which include providing a basis for 
a data base, providing more insight into the solutions, 
and providing a simplified solution method in con- 
nection with Green’s functions. 

Though the proposed numbering system covers an 
enormous number of possible cases, the system can 
readily be extended to cover other conditions such as 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10 

11 
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SYSTEMES DE DENOMBREMENT DE LA CONDUCTION THERMIQUE POUR DES 
GEOMETRIES DE BASE 

R&u&--Un sysdme de dbnombrement pour des solutions de conduction thermique variable est propose. 
I1 construit sur des usages connus des descriptions des conditions aux limites. On inclut des geometries P 
une, deux et trois dimensions. Un systeme unique de denombrement est propose pour d&ire des conditions 
aux limites, a l’interface et initiales. Des exemples d’utilisation de cette notation sont donnes. On note les 

avantages de ce sysdme. 

NUMMERNSYSTEM FUR WARMELEITUNG IN GRUNDLEGENDEN GEOMETRIEN 

Zwmmenfassuq-Es wird ein Nummemsystem zur L&sung transienter Warmeleitvorgiinge vor- 
geschlagen. Dieses baut auf frilheren Formulierungen der Randbedingungen auf. Ein-, zwei- und drei- 
dimensionale Geometrien werden beriicksichtigt. Desweiteren wird ein Nummemsystem zur Beschreibung 
von Rand-Schnittstellen und Anfangsbedingungen vorgestellt. Die Anwendung der Notation wird an 

Beispielen gezeigt. Die Vorteile des Systems werden vorgestellt. 
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CHCTEMA 3AlIHCH 3AmW.i TEIWIOIlPOBO~OCTM J(JUI OCHOBHbIX TEOMETFWti 

~-IlpeJutoxe~a y~aaepcanb~aa cnwa 3am1ui pemerraft wwm wcxwuonapaolt renno- 
npoaon~ocq ocztoaan~aa Ha ucuonb3oaamm 83m rpawwbm yc,aoaeft E auno~alolaaa OJaHO-, 
myx- II TpexaiepHue reowrpms. Kpo~e ~oro, npeanomcew vnafl cncTeMa salInca HaPaJlbHbrx 
H rpluornrw yc~~oaniI, a 7naxe ycno~ti Ha w+%5xx rpammax. rIplfaoJtzrcx npuMepbl ncnoJrb3ona- 

HHI !3TO# CHCTWUbl NIIHCH H OTMCWlOl-CI CC XOCTORHCTlU. 
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